Molecular Dynamics Analyses of Deformation Behavior of Long-Period-Stacking-Ordered Structures

نویسندگان

  • Ryosuke Matsumoto
  • Masayuki Uranagase
  • Noriyuki Miyazaki
چکیده

Magnesium alloys containing long-period-stacking ordered (LPSO) phases have attracted considerable attention because they have been reported to exhibit excellent mechanical properties, including high strength and reasonable ductility. It is thought that the LPSO phase plays a critical role in producing these favorable mechanical properties. We analyze the deformation behavior of the LPSO phases with different stacking sequences using molecular dynamics simulations. To highlight the specific deformation behavior of the LPSO phases, we also perform deformation analyses of hexagonal-close-packed and face-centered-cubic (FCC) structures. We focus on the influence of the stacking order rather than the segregated atoms around the FCC-structured layers, and we model an LPSO structure by single element composition where the interatomic interaction is described by a smoothed Lennard-Jones potential. Our simulations indicate that an LPSO structure with a shorter stacking sequence tends to exhibit a higher compressive flow stress, because FCC-structured layers inhibit twinning deformations and non-basal slips. Kinking deformation is observed for an LPSO structure when both compression and shear deformation are present. It is shown that the first-order pyramidal-hcþ ai dislocation disarranges the stacking of an LPSO structure and leaves behind many lattice defects. In addition, those lattice defects activate numerous basal slips. Finally, basal dislocations arrange in a line and generate a misorientation angle. Furthermore, this angle originates the compressive deformation. We also observed some prismatic-hai dislocations and cross slips to the basal plane. These results suggest the importance of non-basal slips for kinking deformation. [doi:10.2320/matertrans.MI201211]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation on Plastic Deformation of Metallic Nanowires

We have studied the initial stage of plastic deformation behavior of metallic nanowire of pure nickel, by using molecular dynamics methods. In these simulations, we applied uniform strain along c-axis at strain rate of 0.5%/100ps, 0.5%/10ps and 0.1%/2ps. We have observed the formation of stacking faults by movement of a partial dislocation, and the development of stacking faults to deformation ...

متن کامل

Study Effect of Deformation Nanochannel Wall Roughness on The Water-Copper Nano-Fluids Poiseuille Flow Behavior

In the nanochannel flow behavior with respect to expand their applications in modern systems is of utmost importance. According to the results obtained in this study, the condition of nonslip on the wall of the nanochannel is not acceptable because in the nano dimensions, slip depends on different parameters including surface roughness. In this study, keeping the side area roughness, deformatio...

متن کامل

Influence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels

In this work, dynamic mechanical properties of three high-manganese steels with TRIP/TWIP or fully TWIP characteristics are studied. High strain rate experiments in the range of true strain rates between ~500 and 1800 /s are conducted using a dynamic torsional testing setup. All the three steels show a positive strain rate sensitivity in the intermediate range of strain rates (up to 500 /s). Bu...

متن کامل

Data in support of crystal structures of highly-ordered long-period stacking-ordered phases with 18R, 14H and 10H-type stacking sequences in the Mg–Zn–Y system

The crystal structures of highly-ordered Mg-Zn-Y long-period stacking-ordered (LPSO) phases with the 18R, 14H and 10H-type stacking sequences have been investigated by atomic-resolution scanning transmission electron microscopy (STEM) and transmission electron microscopy (Kishida et al., 2015) [1]. This data article provides supporting materials for the crystal structure analysis based on the c...

متن کامل

Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals

Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013